000 | 02907nam a22004935i 4500 | ||
---|---|---|---|
001 | 978-3-540-39181-4 | ||
003 | DE-He213 | ||
005 | 20190213151731.0 | ||
007 | cr nn 008mamaa | ||
008 | 121227s1988 gw | s |||| 0|eng d | ||
020 |
_a9783540391814 _9978-3-540-39181-4 |
||
024 | 7 |
_a10.1007/BFb0098389 _2doi |
|
050 | 4 | _aQA611-614.97 | |
072 | 7 |
_aPBP _2bicssc |
|
072 | 7 |
_aMAT038000 _2bisacsh |
|
072 | 7 |
_aPBP _2thema |
|
082 | 0 | 4 |
_a514 _223 |
100 | 1 |
_aMcCoy, Robert A. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
245 | 1 | 0 |
_aTopological Properties of Spaces of Continuous Functions _h[electronic resource] / _cby Robert A. McCoy, Ibula Ntantu. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c1988. |
|
300 |
_aVI, 130 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v1315 |
|
505 | 0 | _aFunction space topologies -- Natural functions -- Convergence and compact subsets -- Cardinal functions -- Completeness and other properties. | |
520 | _aThis book brings together into a general setting various techniques in the study of the topological properties of spaces of continuous functions. The two major classes of function space topologies studied are the set-open topologies and the uniform topologies. Where appropriate, the analogous theorems for the two major classes of topologies are studied together, so that a comparison can be made. A chapter on cardinal functions puts characterizations of a number of topological properties of function spaces into a more general setting: some of these results are new, others are generalizations of known theorems. Excercises are included at the end of each chapter, covering other kinds of function space topologies. Thus the book should be appropriate for use in a classroom setting as well as for functional analysis and general topology. The only background needed is some basic knowledge of general topology. | ||
650 | 0 | _aTopology. | |
650 | 0 | _aGlobal analysis (Mathematics). | |
650 | 1 | 4 |
_aTopology. _0http://scigraph.springernature.com/things/product-market-codes/M28000 |
650 | 2 | 4 |
_aAnalysis. _0http://scigraph.springernature.com/things/product-market-codes/M12007 |
700 | 1 |
_aNtantu, Ibula. _eauthor. _4aut _4http://id.loc.gov/vocabulary/relators/aut |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783662169346 |
776 | 0 | 8 |
_iPrinted edition: _z9783540193029 |
830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v1315 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/BFb0098389 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-LNM | ||
912 | _aZDB-2-BAE | ||
999 |
_c11700 _d11700 |