000 03689nam a22005055i 4500
001 978-3-319-00819-6
003 DE-He213
005 20190213151836.0
007 cr nn 008mamaa
008 131001s2013 gw | s |||| 0|eng d
020 _a9783319008196
_9978-3-319-00819-6
024 7 _a10.1007/978-3-319-00819-6
_2doi
050 4 _aQA331.7
072 7 _aPBKD
_2bicssc
072 7 _aMAT034000
_2bisacsh
072 7 _aPBKD
_2thema
082 0 4 _a515.94
_223
245 1 3 _aAn Introduction to the Kähler-Ricci Flow
_h[electronic resource] /
_cedited by Sebastien Boucksom, Philippe Eyssidieux, Vincent Guedj.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2013.
300 _aVIII, 333 p. 10 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2086
505 0 _aThe (real) theory of fully non linear parabolic equations -- The KRF on positive Kodaira dimension Kähler manifolds -- The normalized Kähler-Ricci flow on Fano manifolds -- Bibliography.
520 _aThis volume collects lecture notes from courses offered at several conferences and workshops, and provides the first exposition in book form of the basic theory of the Kähler-Ricci flow and its current state-of-the-art. While several excellent books on Kähler-Einstein geometry are available, there have been no such works on the Kähler-Ricci flow. The book will serve as a valuable resource for graduate students and researchers in complex differential geometry, complex algebraic geometry and Riemannian geometry, and will hopefully foster further developments in this fascinating area of research.   The Ricci flow was first introduced by R. Hamilton in the early 1980s, and is central in G. Perelman’s celebrated proof of the Poincaré conjecture. When specialized for Kähler manifolds, it becomes the Kähler-Ricci flow, and reduces to a scalar PDE (parabolic complex Monge-Ampère equation). As a spin-off of his breakthrough, G. Perelman proved the convergence of the Kähler-Ricci flow on Kähler-Einstein manifolds of positive scalar curvature (Fano manifolds). Shortly after, G. Tian and J. Song discovered a complex analogue of Perelman’s ideas: the Kähler-Ricci flow is a metric embodiment of the Minimal Model Program of the underlying manifold, and flips and divisorial contractions assume the role of Perelman’s surgeries.
650 0 _aDifferential equations, partial.
650 0 _aGlobal differential geometry.
650 1 4 _aSeveral Complex Variables and Analytic Spaces.
_0http://scigraph.springernature.com/things/product-market-codes/M12198
650 2 4 _aPartial Differential Equations.
_0http://scigraph.springernature.com/things/product-market-codes/M12155
650 2 4 _aDifferential Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M21022
700 1 _aBoucksom, Sebastien.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aEyssidieux, Philippe.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aGuedj, Vincent.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319008189
776 0 8 _iPrinted edition:
_z9783319008202
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2086
856 4 0 _uhttps://doi.org/10.1007/978-3-319-00819-6
912 _aZDB-2-SMA
912 _aZDB-2-LNM
999 _c12071
_d12071