000 | 03395nam a22004935i 4500 | ||
---|---|---|---|
001 | 978-3-540-44550-0 | ||
003 | DE-He213 | ||
005 | 20190213151715.0 | ||
007 | cr nn 008mamaa | ||
008 | 121227s2001 gw | s |||| 0|eng d | ||
020 |
_a9783540445500 _9978-3-540-44550-0 |
||
024 | 7 |
_a10.1007/b76882 _2doi |
|
050 | 4 | _aQA241-247.5 | |
072 | 7 |
_aPBH _2bicssc |
|
072 | 7 |
_aMAT022000 _2bisacsh |
|
072 | 7 |
_aPBH _2thema |
|
082 | 0 | 4 |
_a512.7 _223 |
245 | 1 | 0 |
_aIntroduction to Algebraic Independence Theory _h[electronic resource] / _cedited by Yuri V. Nesterenko, Patrice Philippon. |
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg, _c2001. |
|
300 |
_aXVI, 260 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v1752 |
|
505 | 0 | _a?(?, z) and Transcendence -- Mahler’s conjecture and other transcendence Results -- Algebraic independence for values of Ramanujan Functions -- Some remarks on proofs of algebraic independence -- Elimination multihomogene -- Diophantine geometry -- Géométrie diophantienne multiprojective -- Criteria for algebraic independence -- Upper bounds for (geometric) Hilbert functions -- Multiplicity estimates for solutions of algebraic differential equations -- Zero Estimates on Commutative Algebraic Groups -- Measures of algebraic independence for Mahler functions -- Algebraic Independence in Algebraic Groups. Part 1: Small Transcendence Degrees -- Algebraic Independence in Algebraic Groups. Part II: Large Transcendence Degrees -- Some metric results in Transcendental Numbers Theory -- The Hilbert Nullstellensatz, Inequalities for Polynomials, and Algebraic Independence. | |
520 | _aIn the last five years there has been very significant progress in the development of transcendence theory. A new approach to the arithmetic properties of values of modular forms and theta-functions was found. The solution of the Mahler-Manin problem on values of modular function j(tau) and algebraic independence of numbers pi and e^(pi) are most impressive results of this breakthrough. The book presents these and other results on algebraic independence of numbers and further, a detailed exposition of methods created in last the 25 years, during which commutative algebra and algebraic geometry exerted strong catalytic influence on the development of the subject. | ||
650 | 0 | _aNumber theory. | |
650 | 0 | _aGeometry, algebraic. | |
650 | 1 | 4 |
_aNumber Theory. _0http://scigraph.springernature.com/things/product-market-codes/M25001 |
650 | 2 | 4 |
_aAlgebraic Geometry. _0http://scigraph.springernature.com/things/product-market-codes/M11019 |
700 | 1 |
_aNesterenko, Yuri V. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
700 | 1 |
_aPhilippon, Patrice. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt |
|
710 | 2 | _aSpringerLink (Online service) | |
773 | 0 | _tSpringer eBooks | |
776 | 0 | 8 |
_iPrinted edition: _z9783662183724 |
776 | 0 | 8 |
_iPrinted edition: _z9783540414964 |
830 | 0 |
_aLecture Notes in Mathematics, _x0075-8434 ; _v1752 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/b76882 |
912 | _aZDB-2-SMA | ||
912 | _aZDB-2-LNM | ||
912 | _aZDB-2-BAE | ||
999 |
_c11604 _d11604 |