000 03800nam a22005655i 4500
001 978-3-319-02684-8
003 DE-He213
005 20190213151423.0
007 cr nn 008mamaa
008 140116s2013 gw | s |||| 0|eng d
020 _a9783319026848
_9978-3-319-02684-8
024 7 _a10.1007/978-3-319-02684-8
_2doi
050 4 _aQA273.A1-274.9
050 4 _aQA274-274.9
072 7 _aPBT
_2bicssc
072 7 _aMAT029000
_2bisacsh
072 7 _aPBT
_2thema
072 7 _aPBWL
_2thema
082 0 4 _a519.2
_223
100 1 _aBöttcher, Björn.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aLévy Matters III
_h[electronic resource] :
_bLévy-Type Processes: Construction, Approximation and Sample Path Properties /
_cby Björn Böttcher, René Schilling, Jian Wang.
264 1 _aCham :
_bSpringer International Publishing :
_bImprint: Springer,
_c2013.
300 _aXVIII, 199 p. 1 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLévy Matters, A Subseries on Lévy Processes,
_x2190-6637 ;
_v2099
505 0 _aA Primer on Feller Semigroups and Feller Processes -- Feller Generators and Symbols -- Construction of Feller Processes -- Transformations of Feller Processes -- Sample Path Properties -- Global Properties -- Approximation -- Open Problems -- References -- Index.
520 _aThis volume presents recent developments in the area of Lévy-type processes and more general stochastic processes that behave locally like a Lévy process. Although written in a survey style, quite a few results are extensions of known theorems, and others are completely new. The focus is on the symbol of a Lévy-type process: a non-random function which is the counterpart of the characteristic exponent of a Lévy process. The class of stochastic processes which can be associated with a symbol is characterized, various schemes constructing a stochastic process from a given symbol are discussed, and it is shown how one can use the symbol in order to describe the sample path properties of the underlying process. Lastly, the symbol is used to approximate and simulate Levy-type processes. This is the third volume in a subseries of the Lecture Notes in Mathematics called Lévy Matters. Each volume describes a number of important topics in the theory or applications of Lévy processes and pays tribute to the state of the art of this rapidly evolving subject with special emphasis on the non-Brownian world.
650 0 _aDistribution (Probability theory.
650 0 _aMathematics.
650 0 _aFunctional analysis.
650 0 _aOperator theory.
650 1 4 _aProbability Theory and Stochastic Processes.
_0http://scigraph.springernature.com/things/product-market-codes/M27004
650 2 4 _aMathematics, general.
_0http://scigraph.springernature.com/things/product-market-codes/M00009
650 2 4 _aFunctional Analysis.
_0http://scigraph.springernature.com/things/product-market-codes/M12066
650 2 4 _aOperator Theory.
_0http://scigraph.springernature.com/things/product-market-codes/M12139
700 1 _aSchilling, René.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aWang, Jian.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783319026831
776 0 8 _iPrinted edition:
_z9783319026855
830 0 _aLévy Matters, A Subseries on Lévy Processes,
_x2190-6637 ;
_v2099
856 4 0 _uhttps://doi.org/10.1007/978-3-319-02684-8
912 _aZDB-2-SMA
912 _aZDB-2-LNM
999 _c10609
_d10609