000 03583nam a22005415i 4500
001 978-3-540-44486-2
003 DE-He213
005 20190213151331.0
007 cr nn 008mamaa
008 100806s2000 gw | s |||| 0|eng d
020 _a9783540444862
_9978-3-540-44486-2
024 7 _a10.1007/BFb0106739
_2doi
050 4 _aQA299.6-433
072 7 _aPBK
_2bicssc
072 7 _aMAT034000
_2bisacsh
072 7 _aPBK
_2thema
082 0 4 _a515
_223
100 1 _aKawohl, Bernhard.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aOptimal Shape Design
_h[electronic resource] :
_bLectures given at the joint C.I.M./C.I.M.E. Summer School held in Tróia, Portugal, June 1–6, 1998 /
_cby Bernhard Kawohl, Olivier Pironneau, Luc Tartar, Jean-Paul Zolésio ; edited by Arrigo Cellina, António Ornelas.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2000.
300 _aXII, 392 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aC.I.M.E. Foundation Subseries ;
_v1740
505 0 _aSome nonconvex shape optimization problems -- An introduction to the homogenization method in optimal design -- Shape analysis and weak flow -- Optimal shape design by local boundary variations.
520 _aOptimal Shape Design is concerned with the optimization of some performance criterion dependent (besides the constraints of the problem) on the "shape" of some region. The main topics covered are: the optimal design of a geometrical object, for instance a wing, moving in a fluid; the optimal shape of a region (a harbor), given suitable constraints on the size of the entrance to the harbor, subject to incoming waves; the optimal design of some electrical device subject to constraints on the performance. The aim is to show that Optimal Shape Design, besides its interesting industrial applications, possesses nontrivial mathematical aspects. The main theoretical tools developed here are the homogenization method and domain variations in PDE. The style is mathematically rigorous, but specifically oriented towards applications, and it is intended for both pure and applied mathematicians. The reader is required to know classical PDE theory and basic functional analysis.
650 0 _aGlobal analysis (Mathematics).
650 0 _aMathematical optimization.
650 1 4 _aAnalysis.
_0http://scigraph.springernature.com/things/product-market-codes/M12007
650 2 4 _aCalculus of Variations and Optimal Control; Optimization.
_0http://scigraph.springernature.com/things/product-market-codes/M26016
700 1 _aPironneau, Olivier.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aTartar, Luc.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aZolésio, Jean-Paul.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
700 1 _aCellina, Arrigo.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
700 1 _aOrnelas, António.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783662204214
776 0 8 _iPrinted edition:
_z9783540679714
830 0 _aC.I.M.E. Foundation Subseries ;
_v1740
856 4 0 _uhttps://doi.org/10.1007/BFb0106739
912 _aZDB-2-SMA
912 _aZDB-2-LNM
912 _aZDB-2-BAE
999 _c10310
_d10310