000 03150nam a22004815i 4500
001 978-3-642-22534-5
003 DE-He213
005 20190213151303.0
007 cr nn 008mamaa
008 110815s2011 gw | s |||| 0|eng d
020 _a9783642225345
_9978-3-642-22534-5
024 7 _a10.1007/978-3-642-22534-5
_2doi
050 4 _aQA564-609
072 7 _aPBMW
_2bicssc
072 7 _aMAT012010
_2bisacsh
072 7 _aPBMW
_2thema
082 0 4 _a516.35
_223
100 1 _aMatsumoto, Yukio.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
245 1 0 _aPseudo-periodic Maps and Degeneration of Riemann Surfaces
_h[electronic resource] /
_cby Yukio Matsumoto, José María Montesinos-Amilibia.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg,
_c2011.
300 _aXVI, 240 p. 55 illus.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2030
505 0 _aPart I: Conjugacy Classification of Pseudo-periodic Mapping Classes -- 1 Pseudo-periodic Maps -- 2 Standard Form -- 3 Generalized Quotient -- 4 Uniqueness of Minimal Quotient -- 5 A Theorem in Elementary Number Theory -- 6 Conjugacy Invariants -- Part II: The Topology of Degeneration of Riemann Surfaces -- 7 Topological Monodromy -- 8 Blowing Down Is a Topological Operation -- 9 Singular Open-Book.
520 _aThe first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mapping classes are completely classified, and Nielsen’s incomplete classification is corrected. The second part applies the results of the first part to the topology of degeneration of Riemann surfaces. It is shown that the set of topological types of all the singular fibers appearing in one-parameter holomorphic families of Riemann surfaces is in a bijective correspondence with the set of conjugacy classes of the pseudo-periodic maps of negative twists. The correspondence is given by the topological monodromy.
650 0 _aGeometry, algebraic.
650 0 _aCell aggregation
_xMathematics.
650 1 4 _aAlgebraic Geometry.
_0http://scigraph.springernature.com/things/product-market-codes/M11019
650 2 4 _aManifolds and Cell Complexes (incl. Diff.Topology).
_0http://scigraph.springernature.com/things/product-market-codes/M28027
700 1 _aMontesinos-Amilibia, José María.
_eauthor.
_4aut
_4http://id.loc.gov/vocabulary/relators/aut
710 2 _aSpringerLink (Online service)
773 0 _tSpringer eBooks
776 0 8 _iPrinted edition:
_z9783642225338
776 0 8 _iPrinted edition:
_z9783642225352
830 0 _aLecture Notes in Mathematics,
_x0075-8434 ;
_v2030
856 4 0 _uhttps://doi.org/10.1007/978-3-642-22534-5
912 _aZDB-2-SMA
912 _aZDB-2-LNM
999 _c10160
_d10160