Amazon cover image
Image from Amazon.com
Image from Google Jackets

The Decomposition of Primes in Torsion Point Fields [electronic resource] / edited by Clemens Adelmann.

Contributor(s): Material type: TextTextSeries: Lecture Notes in Mathematics ; 1761Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2001Description: VIII, 148 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540449492
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 512.7 23
LOC classification:
  • QA241-247.5
Online resources:
Contents:
Introduction -- Decomposition laws -- Elliptic curves -- Elliptic modular curves -- Torsion point fields -- Invariants and resolvent polynomials -- Appendix: Invariants of elliptic modular curves; L-series coefficients a p; Fully decomposed prime numbers; Resolvent polynomials; Free resolution of the invariant algebra.
In: Springer eBooksSummary: It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Introduction -- Decomposition laws -- Elliptic curves -- Elliptic modular curves -- Torsion point fields -- Invariants and resolvent polynomials -- Appendix: Invariants of elliptic modular curves; L-series coefficients a p; Fully decomposed prime numbers; Resolvent polynomials; Free resolution of the invariant algebra.

It is an historical goal of algebraic number theory to relate all algebraic extensionsofanumber?eldinauniquewaytostructuresthatareexclusively described in terms of the base ?eld. Suitable structures are the prime ideals of the ring of integers of the considered number ?eld. By examining the behaviouroftheprimeidealswhenembeddedintheextension?eld,su?cient information should be collected to distinguish the given extension from all other possible extension ?elds. The ring of integers O of an algebraic number ?eld k is a Dedekind ring. k Any non-zero ideal in O possesses therefore a decomposition into a product k of prime ideals in O which is unique up to permutations of the factors. This k decomposition generalizes the prime factor decomposition of numbers in Z Z. In order to keep the uniqueness of the factors, view has to be changed from elements of O to ideals of O . k k Given an extension K/k of algebraic number ?elds and a prime ideal p of O , the decomposition law of K/k describes the product decomposition of k the ideal generated by p in O and names its characteristic quantities, i. e. K the number of di?erent prime ideal factors, their respective inertial degrees, and their respective rami?cation indices. Whenlookingatdecompositionlaws,weshouldinitiallyrestrictourselves to Galois extensions. This special case already o?ers quite a few di?culties.

There are no comments on this title.

to post a comment.
(C) Powered by Koha

Powered by Koha