Amazon cover image
Image from Amazon.com
Image from Google Jackets

Chaos Detection and Predictability [electronic resource] / edited by Charalampos (Haris) Skokos, Georg A. Gottwald, Jacques Laskar.

Contributor(s): Material type: TextTextSeries: Lecture Notes in Physics ; 915Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2016Description: XI, 269 p. 122 illus., 44 illus. in color. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783662484104
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 621 23
LOC classification:
  • QC174.7-175.36
Online resources:
Contents:
Estimating Lyapunov exponents from time series -- Theory and applications of the fast Lyapunov Indicator (FLI) method -- Theory and applications of the Orthogonal Fast Lyapunov Indicator (OFLI and OFLI2) methods -- Theory and applications of the Mean Exponential Growth factor of Nearby Orbits (MEGNO) method -- The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection -- The Relative Lyapunov Indicators: Theory and Application to Dynamical Astronomy -- The 0-1 Test for Chaos: A review.
In: Springer eBooksSummary: Distinguishing chaoticity from regularity in deterministic dynamical systems and specifying the subspace of the phase space in which instabilities are expected to occur is of utmost importance in as disparate areas as astronomy, particle physics and climate dynamics. To address these issues there exists a plethora of methods for chaos detection and predictability. The most commonly employed technique for investigating chaotic dynamics, i.e. the computation of Lyapunov exponents, however, may suffer a number of problems and drawbacks, for example when applied to noisy experimental data. In the last two decades, several novel methods have been developed for the fast and reliable determination of the regular or chaotic nature of orbits, aimed at overcoming the shortcomings of more traditional techniques. This set of lecture notes and tutorial reviews serves as an introduction to and overview of modern chaos detection and predictability techniques for graduate students and non-specialists. The book covers theoretical and computational aspects of traditional methods to calculate Lyapunov exponents, as well as of modern techniques like the Fast (FLI), the Orthogonal (OFLI) and the Relative (RLI) Lyapunov Indicators, the Mean Exponential Growth factor of Nearby Orbits (MEGNO), the Smaller (SALI) and the Generalized (GALI) Alignment Index and the ‘0-1’ test for chaos.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

Estimating Lyapunov exponents from time series -- Theory and applications of the fast Lyapunov Indicator (FLI) method -- Theory and applications of the Orthogonal Fast Lyapunov Indicator (OFLI and OFLI2) methods -- Theory and applications of the Mean Exponential Growth factor of Nearby Orbits (MEGNO) method -- The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detection -- The Relative Lyapunov Indicators: Theory and Application to Dynamical Astronomy -- The 0-1 Test for Chaos: A review.

Distinguishing chaoticity from regularity in deterministic dynamical systems and specifying the subspace of the phase space in which instabilities are expected to occur is of utmost importance in as disparate areas as astronomy, particle physics and climate dynamics. To address these issues there exists a plethora of methods for chaos detection and predictability. The most commonly employed technique for investigating chaotic dynamics, i.e. the computation of Lyapunov exponents, however, may suffer a number of problems and drawbacks, for example when applied to noisy experimental data. In the last two decades, several novel methods have been developed for the fast and reliable determination of the regular or chaotic nature of orbits, aimed at overcoming the shortcomings of more traditional techniques. This set of lecture notes and tutorial reviews serves as an introduction to and overview of modern chaos detection and predictability techniques for graduate students and non-specialists. The book covers theoretical and computational aspects of traditional methods to calculate Lyapunov exponents, as well as of modern techniques like the Fast (FLI), the Orthogonal (OFLI) and the Relative (RLI) Lyapunov Indicators, the Mean Exponential Growth factor of Nearby Orbits (MEGNO), the Smaller (SALI) and the Generalized (GALI) Alignment Index and the ‘0-1’ test for chaos.

There are no comments on this title.

to post a comment.
(C) Powered by Koha

Powered by Koha