Amazon cover image
Image from Amazon.com
Image from Google Jackets

Interdisciplinary Aspects of Turbulence [electronic resource] / edited by Wolfgang Hillebrandt, Friedrich Kupka.

Contributor(s): Material type: TextTextSeries: Lecture Notes in Physics ; 756Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2009Description: X, 340 p. 110 illus. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783540789611
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 621 23
LOC classification:
  • QC174.7-175.36
Online resources:
Contents:
An Introduction to Turbulence -- Nonextensive Statistical Mechanics and Nonlinear Dynamics -- Turbulent Convection and Numerical Simulations in Solar and Stellar Astrophysics -- Turbulence in Astrophysical and Geophysical Flows -- Turbulence in the Lower Troposphere: Second-Order Closure and Mass#x2013;Flux Modelling Frameworks -- Magnetohydrodynamic Turbulence -- Turbulent Combustion in Thermonuclear Supernovae -- ODT: Stochastic Simulation of Multi-scale Dynamics.
In: Springer eBooksSummary: What do combustion engines, fusion reactors, weather forecast, ocean flows, our sun, and stellar explosions in outer space have in common? Of course, the physics and the length and time scales are vastly different in all cases, but it is also well known that in all of them, on some relevant length scales, the material flows that govern the dynamical and/or secular evolution of the systems are chaotic and often unpredictable: they are said to be turbulent. The interdisciplinary aspects of turbulence are brought together in this volume containing chapters written by experts from very different fields, including geophysics, astrophysics, and engineering. It covers several subjects on which considerable progress was made during the last decades, from questions concerning the very nature of turbulence to some practical applications. These subjects include: a basic introduction into turbulence, statistical mechanics and nonlinear dynamics, turbulent convection in stars, atmospheric turbulence in the context of numerical weather predictions, magnetohydrodynamic turbulence, turbulent combustion with application to supernova explosions, and finally the numerical treatment of the multi-scale character of turbulence.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

An Introduction to Turbulence -- Nonextensive Statistical Mechanics and Nonlinear Dynamics -- Turbulent Convection and Numerical Simulations in Solar and Stellar Astrophysics -- Turbulence in Astrophysical and Geophysical Flows -- Turbulence in the Lower Troposphere: Second-Order Closure and Mass#x2013;Flux Modelling Frameworks -- Magnetohydrodynamic Turbulence -- Turbulent Combustion in Thermonuclear Supernovae -- ODT: Stochastic Simulation of Multi-scale Dynamics.

What do combustion engines, fusion reactors, weather forecast, ocean flows, our sun, and stellar explosions in outer space have in common? Of course, the physics and the length and time scales are vastly different in all cases, but it is also well known that in all of them, on some relevant length scales, the material flows that govern the dynamical and/or secular evolution of the systems are chaotic and often unpredictable: they are said to be turbulent. The interdisciplinary aspects of turbulence are brought together in this volume containing chapters written by experts from very different fields, including geophysics, astrophysics, and engineering. It covers several subjects on which considerable progress was made during the last decades, from questions concerning the very nature of turbulence to some practical applications. These subjects include: a basic introduction into turbulence, statistical mechanics and nonlinear dynamics, turbulent convection in stars, atmospheric turbulence in the context of numerical weather predictions, magnetohydrodynamic turbulence, turbulent combustion with application to supernova explosions, and finally the numerical treatment of the multi-scale character of turbulence.

There are no comments on this title.

to post a comment.
(C) Powered by Koha

Powered by Koha