Amazon cover image
Image from Amazon.com
Image from Google Jackets

Spectral Theory of Non-Commutative Harmonic Oscillators: An Introduction [electronic resource] / by Alberto Parmeggiani.

By: Contributor(s): Material type: TextTextSeries: Lecture Notes in Mathematics ; 1992Publisher: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Description: XII, 260 p. online resourceContent type:
  • text
Media type:
  • computer
Carrier type:
  • online resource
ISBN:
  • 9783642119224
Subject(s): Additional physical formats: Printed edition:: No title; Printed edition:: No titleDDC classification:
  • 515.353 23
LOC classification:
  • QA370-380
Online resources:
Contents:
The Harmonic Oscillator -- The Weyl–Hörmander Calculus -- The Spectral Counting Function N(?) and the Behavior of the Eigenvalues: Part 1 -- The Heat-Semigroup, Functional Calculus and Kernels -- The Spectral Counting Function N(?) and the Behavior of the Eigenvalues: Part 2 -- The Spectral Zeta Function -- Some Properties of the Eigenvalues of -- Some Tools from the Semiclassical Calculus -- On Operators Induced by General Finite-Rank Orthogonal Projections -- Energy-Levels, Dynamics, and the Maslov Index -- Localization and Multiplicity of a Self-Adjoint Elliptic 2×2 Positive NCHO in .
In: Springer eBooksSummary: This volume describes the spectral theory of the Weyl quantization of systems of polynomials in phase-space variables, modelled after the harmonic oscillator. The main technique used is pseudodifferential calculus, including global and semiclassical variants. The main results concern the meromorphic continuation of the spectral zeta function associated with the spectrum, and the localization (and the multiplicity) of the eigenvalues of such systems, described in terms of “classical” invariants (such as the periods of the periodic trajectories of the bicharacteristic flow associated with the eiganvalues of the symbol). The book utilizes techniques that are very powerful and flexible and presents an approach that could also be used for a variety of other problems. It also features expositions on different results throughout the literature.
Tags from this library: No tags from this library for this title. Log in to add tags.
No physical items for this record

The Harmonic Oscillator -- The Weyl–Hörmander Calculus -- The Spectral Counting Function N(?) and the Behavior of the Eigenvalues: Part 1 -- The Heat-Semigroup, Functional Calculus and Kernels -- The Spectral Counting Function N(?) and the Behavior of the Eigenvalues: Part 2 -- The Spectral Zeta Function -- Some Properties of the Eigenvalues of -- Some Tools from the Semiclassical Calculus -- On Operators Induced by General Finite-Rank Orthogonal Projections -- Energy-Levels, Dynamics, and the Maslov Index -- Localization and Multiplicity of a Self-Adjoint Elliptic 2×2 Positive NCHO in .

This volume describes the spectral theory of the Weyl quantization of systems of polynomials in phase-space variables, modelled after the harmonic oscillator. The main technique used is pseudodifferential calculus, including global and semiclassical variants. The main results concern the meromorphic continuation of the spectral zeta function associated with the spectrum, and the localization (and the multiplicity) of the eigenvalues of such systems, described in terms of “classical” invariants (such as the periods of the periodic trajectories of the bicharacteristic flow associated with the eiganvalues of the symbol). The book utilizes techniques that are very powerful and flexible and presents an approach that could also be used for a variety of other problems. It also features expositions on different results throughout the literature.

There are no comments on this title.

to post a comment.
(C) Powered by Koha

Powered by Koha